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Path integral Monte Carlo calculation of electronic forces

Fenghua Zong and D. M. Ceperley
National Center for Supercomputing Applications, Department of Physics, University of Illinois at Urbana–Champaign,

1110 West Green Street, Urbana, Illinois 61801
~Received 30 April 1998!

We describe a method to evaluate electronic forces by path integral Monte Carlo~PIMC! calculation.
Electronic correlations, as well as thermal effects, are included naturally in this method. For fermions, a
restricted approach is used to avoid the ‘‘sign’’ problem. The PIMC force estimator is local and has a finite
variance. We applied this method to determine the bond length of H2 and the chemical reaction barrier of H
1H2→H21H. At low temperature, good agreement is obtained with ground-state calculations. We studied the
proton-proton interaction in an electron gas as a simple model for hydrogen impurities in metals. We calculated
the force between the two protons at two electronic densities corresponding to Na (r s53.93) and Al (r s

52.07) using a supercell with 38 electrons. The result is compared to previous calculations. We also studied
the effect of temperature on the proton-proton interaction. At very high temperature, our result agrees with the
Debye screening of electrons. As temperature decreases, the Debye theory fails both because of the strong
degeneracy of electrons and most importantly, the formation of electronic bound states around the protons.
@S1063-651X~98!07710-1#

PACS number~s!: 02.70.Lq, 34.20.Cf, 71.55.Ak
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I. INTRODUCTION

Forces are a basic quantity needed in understanding
croscopic systems; e.g., they are basic inputs to molec
dynamics simulations and to predicting the equilibriu
structures. For a system of electrons and nuclei in ther
equilibrium, it is a very good approximation to assume th
the electrons follow the motion of the nuclei adiabatical
The forces exerted on those nuclei due to the fast mov
electrons are known as the Born-Oppenheimer~BO! forces.
Ehrenfest@1# first related the force to the expectation val
of the gradient of the potential, which led to the Hellman
Feynman theorem@2#. Accurate results have been obtain
using this theorem within the framework of the local dens
functional theory~LDA ! @3#. Unlike the energy, the force i

directly related to the optimized geometry~i.e., when FW

50W ) and it allows one to probe every single nucleus in
system; one can determine the forces on each nucleus
optimize their individual positions concurrently. In conjun
tion with the total energy, the force can be used to h
construct the potential energy surface. With energies kno
at certain grid points, a more accurate fit can be obtaine
one knows the derivatives at those points also.

Quantum Monte Carlo~QMC! methods are capable o
treating many-body effects directly, which is essential
cases where the electron correlations are important.
computational demand of QMC scales asN3 @4# or less
where N is the number of particles, while other method
which depend on a complete representation of the ma
body wave function or density matrix, such as configurat
interaction~CI!, have an exponential dependence on the s
of the system. For QMC simulations, the total energy of
system usually has a variance that is proportional to the
of the system, making it difficult to distinguish the contrib
tion of a single particle and the effect of a local displacem
of nuclear positions. Consequently, the ability to calcul
PRE 581063-651X/98/58~4!/5123~8!/$15.00
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forces with QMC methods provides not only a good test
the accuracy of the commonly used LDA calculations b
also an accurate many-body approach that could be app
to extended systems.

The calculation of forces with QMC methods is a lon
standing important problem. There has been some prog
@5# in the calculation of forces with both variational Mon
Carlo ~VMC! and diffusion Monte Carlo~DMC!, however,
they are still limited to relatively small systems, for examp
LiH @6#, BH @7#, and CuH@8#.

The most straightforward approach to estimate for
would be to calculate the total energy difference betwe
two sets of nuclear configurations, which are close toget
Then the force, for example, the force component in theŷ
direction on nucleusi , can be approximated as

Fiy52
]E

]Xiy
.2

E~XW 1DXiyŷ!2E~XW !

DXiy
, ~1!

whereXW is the position of all nuclei andXW i is for nucleusi .
However, due to the statistical nature of Monte Carlo cal
lations, the energy estimation is always associated wit
statistical errorsE and the error for the force is thensF

5A2sE /DXiy for independent sampling ofXW and XW 1DXW .
Hence the error diverges asDXiy→0, making this simple
approach impractical.

The Hellmann-Feynman theorem expresses the force
the expectation value of the potential gradient with respec
the wave functionC:

FW 52^Cu¹W XV~XW !uC&. ~2!

This approach is well suited for Hartree-Fock or LDA-typ
calculations where the trial wave functions are the eigenfu
tions of the Hamiltonian without statistical fluctuation
However, as illustrated in Ref.@5#, the variance of this force
5123 © 1998 The American Physical Society
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5124 PRE 58FENGHUA ZONG AND D. M. CEPERLEY
estimator is infinite for Coulomb systems because of ther
behavior of the potential as electrons approach a nucl
Consequently, it is not possible to get a reliable estimation
the force by Monte Carlo methods using this estimator.

There are other analytical derivative methods for QM
For example, one can explicitly carry out the derivative
the variational or diffusion Monte Carlo energy estima
@5#:

E5

E F0ELCdR

E F0CdR

~3!

and express the force as a function of¹XF0 , ¹XEL , and
¹XC. HereC is the trial wave function andR is electronic
coordinate. NoteF0 , which is the exact ground state wav
function of the system, is unknown. One needs either to
a good approximation to¹XF0 or to use further diffusion
Monte Carlo walks to calculate it. Also, it may be difficult t
determine¹XC. These difficulties have prevented routin
calculations of forces with QMC.

In this paper, we formulate the force as the derivative
the Born-Oppenheimer free energy with respect to
nuclear coordinates, and then evaluate the derivative wi
path integral Monte Carlo~PIMC! technique. The force esti
mator is local and easy to compute. It also has a m
smaller variance than that of Eq.~1!. In the following, we
first review the basic formulation of PIMC and then sho
how the force is computed. We apply this method to
molecules H2 and H3, and find good agreement betwee
PIMC results at low temperature with those of accur
ground-state calculations. To demonstrate the method w
in an extended system, we study the proton-proton inte
tion in an electron gas, and compare it to LDA calculatio

II. PATH INTEGRAL AND FORCE CALCULATION

Path integral Monte Carlo calculation is a powerful co
putational technique that is capable of simulating boson s
tems@9# exactly and fermions@10# accurately. Besides tota
energy, many properties of the system, such as pair cor
tion function, specific heat, pressure, momentum distri
tion, and the boson superfluid density have been calcula
In this paper, we show how one can compute the electro
forces with PIMC as well.

Consider a system ofN nonrelativistic particles~electrons
and nuclei! interacting via Coulomb potential. The Hami
tonian is

H52(
i 51

N

l i¹ i
21(

i , j

eiej

r i j
, ~4!

wherel i5\2/2mi . We will use atomic units throughout th
paper: the unit for length is bohr and the unit for energy
hartree. In these units, the electron chargeei521 and the
inverse electron massl i51/2.

In principle, all the properties of an equilibrium system
a finite temperatureT can be determined from the therm
density matrix, which, for a Boltzmann system, can be
pressed in the position representation as
/
s.
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r~R,R8;b!5^Rue2bHuR8&

[H)
i

~4pl ib!23/2expF2
~r i2r i8!2

4l ib
G J

3exp@2U~R,R8;b!#, ~5!

whereR5$rW1 , . . . ,rWN% is the set of all particle coordinates
b51/kBT is the inverse of the temperature. The expectat
value of an operatorO is

^O&5
1

ZE dRdR8r~R,R8;b!^RuOuR8&, ~6!

whereZ5exp(2bF)5*dRr(R,R;b) is the partition func-
tion andF is the free energy.

The calculation of many-body density matrix at a fini
temperature is done by expanding it in terms of density m
trices at higher temperatures:

r~R0,RM;b!5E •••E dR1dR2
•••dRM21

3r~R0,R1;t!•••r~RM21,RM;t! ~7!

whereM is the number of time slices andt5b/M is called
the time step.

It is much easier to obtain a good approximation to t
high-temperature density matrix since the system beha
like a classical system at high temperature. The pair prod
approximation@9# has been shown to give much smaller e
rors in the density matrices compared with the primitive a
proximation, so a much larger time step can be used. In
approach, one solves the exact actionu2(r i j ,r i j8 ;t) for a pair
of particles and uses

U~R,R8;t!5(
i , j

u2~r i j ,r i j8 ;t!. ~8!

Errors occur only when three or more particles come clos
each other. In our simulation, we used a matrix squar
method @9# to numerically calculate the high-temperatu
pair action.

Because of their relevance, here we review a few prop
ties of the Coulomb pair action@11#. The classical limit of
the action istv(r ) where v(r ) is the Coulomb potentia
between the two particles. For larger i j or high temperature,
one can expand the action in powers of\ or t ~Wigner-
Kirkwood expansion! to get on the diagonal:

u2~r i j ,r i j ;t!5
teiej

r i j
2

t3~eiej !
2~l i1l j !

12r i j
4

1O~t4!. ~9!

At small r i j , quantum effects smooth the divergence of t
Coulomb potential. As a result, the pair action and its co
dinate derivative are finite. The cusp condition of the Blo
equation gives the slope at the origin:

lim
r i j→0

]u2~r i j ,r i j8 ;t!

]r i j
52

eiej

2~l i1l j !
. ~10!
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Now let us take into account Fermi statistics. Witho
magnetic fields, the Hamiltonian is independent of spin a
sz is a good quantum number. One can treat identical p
ticles with differentsz as different species and apply qua
tum statistics only to electrons of the same spin. LetP be the
permutation operator of particle labels. Then for each s
state@10#:

rF~R,R8;b!5
1

N!(P ~21!Pr~PR,R8;b!, ~11!

whererF is the fermion density matrix andN is the number
of electrons in that spin state.

Because odd permutations of fermions contribute a mi
sign, a direct summation as for bosons will result in an
ceedingly low efficiency asb or N increase@10#. The re-
stricted path integral Monte Carlo~RPIMC! @10# solves this
problem by only allowing paths that do not cross the no
surface of the fermion density matrix. The nodes are de
mined byrF(Rt,R* ;t)50. R* , the reference point, is a spe
cial point on the path. It is the value of the density mat
with respect to the reference point that restricts the path
one knows the exact (3N21)-dimensional nodes, th
RPIMC method is exact. In practice, the nodes are
known; one introduces a trial density matrix and uses
nodes instead. In this paper, we use the nodal surfac
noninteracting particle systems. This has been shown to
accurate simulations of hydrogen plasma@12# and liquid 3He
@13#. The success of such a seemingly simple restriction
be understood if one takes a more realistic pair product d
sity matrix and applies the end-point approximation, o
finds the nodal surface is exactly that of the noninteract
system@10#. The off-diagonal corrections to the nodes sc
asO(t2), they are important only at fairly low temperature
because the leading kinetic energy contribution isO(t21).

RPIMC gives an additional contribution to the action d
to the restriction on the crossing of the nodal surface@10#.
Locally the nodes can be approximated as hyperplanes.
small time stept, the nodal action is

uN~R0,RM;b!52 (
i 50

M21

lnF12expS 2
didi 11

lt D G , ~12!

wheredi is the distance ofRi to the nearest nodes.
Now return to the problem of computing the quantu

forces: consider a system ofNn nuclei andNe electrons. We
fix the position of nuclei~no nuclear kinetic energy! and
calculate the Born-Oppenheimer free energy of the electr
as a function of the nuclear coordinates:

F[F~$XW 1 , . . . ,XW Nn
%;b!. ~13!

The force exerted on the nuclei in thermal equilibrium is

FW 52¹W XF5
1

bZ
¹W XZ, ~14!

whereZ is the partition function and¹W X only acts on nuclear
coordinates.

Differentiating the path integral expression for the pa
tion function:
t
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FW 52
1

bZE •••E dR0
•••RM21

3Fr~R0,R1;t!•••r~RM21,RM;t!

3 (
i 50

M21
]U~Ri ,Ri 11;t!

]XW
G ~15!

[2
1

MtK (
i 50

M21
]U~Ri ,Ri 11;t!

]XW
L , ~16!

where^•••& denotes an average over the paths,R05RM and
Ri are electronic coordinates only. The nuclear coordina
are not explicitly written in the action because they are in
pendent of the time slice and fixed during the simulation

We arrive at the formula for the force estimator by e
panding the action in terms of sums over pairs of charg
particles:

FW 52
1

MtK (
i 50

M21

(
kl

]u2~r kl
i ,r kl

i 11 ;t!

]XW
L . ~17!

Note here thatk and l run over nuclear indices also. Fo
small r or r 8, both u2(r ,r 8;t) and ]u2 /]r @Eq. ~10!# have
finite values. At larger , the action approachesteiej /r .
There is no divergence in this force estimator and thus
error is finite in contrast to estimators based on the Hellm
Feynman theorem.

Fermion nodes cause an additional contribution to
force. The electronic nodal surface can depend on the p
tions of nuclei, and so does the distance ofRi to the nodes:

di5di~$XW 1 , . . . ,XW Nn
%!. ~18!

When taking the derivative of the action with respect
nuclear coordinates, the change of the nodal surface will c
tribute a force on the nuclei:

FW N52
1

t K ]uN~Ri ,Ri 11;t!

]XW L ~19!

52
1

lt2K FexpS didi 11

lt D21G21 ]~didi 11!

]XW L .

~20!

However, this term vanishes with noninteracting nodal s
faces because the nodal positions are independent of
nuclear coordinates.

We now investigate how the computer time will depe
on the time step. In general, the variance of the force e
mator,sF

2 , is a function of the time stept. Because of the
high-temperature approximations introduced in a PIM
simulation, the force is only exact in the limit oft→0.
Hence the behavior of the variance at smallt affects the
overall efficiency of a calculation. To understand the dep
dence ofsF

2 on t, we consider a typical, yet simple system
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5126 PRE 58FENGHUA ZONG AND D. M. CEPERLEY
a hydrogen atom. Assuming independent samples of sl
on the path, the variance of the force is

sF
25

1

t2K S ]u~r i ,r i 11;t!

]XW
D 2L 2

1

t2S K ]u

]XW L D 2

, ~21!

wherer i is the relative coordinate between the electron a
the proton at time stepi . The second term in the abov
equation is the square of the force~zero in this case! and is
independent oft, so we only need to estimate the first ter

Both the smallr @Eq. ~10!# and larger @Eq. ~9!# limit for
the action is known. We approximate the derivative of t
action as

]u~r ,r ;t!

]r
5H 1, ur u,r c

t/ur u2, ur u>r c ,
~22!

wherer c5A2lt, the thermal de Broglie wavelength, is th
radius inside of which quantum correction is important. T
variance is thus roughly

sF
2'

1

t2Z
E drr~r ,r ;b!S ]u~r ,r ;t!

]XW
D 2

~23!

}t21/21O~1!. ~24!

The error will diverge whent→0, but only very slowly, as
t21/4.

The above estimate does not take into account h
quickly independent samples can be generated or how a
cent time slices are correlated, so we performed an empi
study of the efficiency using our PIMC code. The efficien
of the PIMC force calculation is defined as

jF5
1

sF
2 PT

. ~25!

It measures how quickly the variance of the force,sF
2 , de-

creases as a function of computer time. HereP is the number
of Monte Carlo steps andT is the computer time per step
Figure 1 shows the efficiency as a function oft for the PIMC
simulation of a H2 molecule. We found thatjF scales ast1.4.

The only terms that contribute in Eq.~17! are terms in-
volving the nucleus in question and another charged part
The dominant contributions are local. The force on a nucl
mostly comes from nearby electrons, hence the force v
ance is mainly due to nearby electronic paths and indep
dent of the total number of electrons. One can preferenti
move electrons that are near to the nucleus and thereby
tain a better overall efficiency of the force calculation. W
performed PIMC simulations of H impurities in an electro
gas ~see Sec. IV! and found a power-law behavior of th
efficiency as a function of the number of electronsNe . As
shown in Fig. 2,jF;Ne

22.8.
To evaluate the path average in Eq.~17!, one samples the

path space with the multilevel Metropolis method; the le
is chosen so that the diffusion of paths in both the coordin
and the permutation space is maximized. This is discusse
detail in Refs.@9,10#. Typically a path segment of 4–1
slices is moved at the same time. The permutation spac
es

d
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sampled by cyclic exchange of the labels of three partic
followed by a path move~for RPIMC, a two particle permu-
tation gives a minus sign and is not allowed!. This achieves
ergodic sampling of the permutation space.

III. FORCE CALCULATION FOR H 2 AND H3

To test the above approach, we apply it to the H2 and H3
molecules, since very accurate results for these systems
known. PIMC is a finite temperature method and it is w
known that an isolated Coulomb system at a finite tempe
ture would self-ionize. To circumvent this problem, we pla
the molecule in a periodic cube. When an electron ioni
and moves out of the simulation cell from one side, it w
reenter from the other side and be captured again by
molecule. The properties of the ground state and low exc
states of the system are unaffected if the cell is large eno
because the wave functions corresponding to these state
very small at the cell boundary. As a result, these sta
hardly feel the existence of the periodic boundary condit

FIG. 1. The efficiencyjF of the PIMC force calculation for a H2
molecule as a function of time stept at an inverse temperatureb
519.2 a.u. in units of bohr2/hartree2 sec on a SGI/CRAY Ori-
gin2000 computer. The solid line is the power law fitt1.4.

FIG. 2. The efficiencyjF of the PIMC force calculation as a
function of the total number of electrons. The system consists
two protons andNe electrons as discussed in Fig. 7. The solid li
is the power law fitNe

22.8.
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and the wave functions are unchanged. For higher exc
states and continuous states, which are more spread o
space, wave functions from adjacent cells overlap with e
other. Those states and their energy spectrum are
changed in such a way as to prevent the ionization. We
only concerned with the low-temperature properties of
system, corresponding to the lowest states of the molec
The periodic boundary condition is well suited for this pu
pose. The minimum image convention@14# was used in cal-
culating the Coulomb interaction. No long range contrib
tions from images are included.

The ground state of hydrogen molecule (H2) has two
electrons with opposite spin and can be simulated as dis
guishable particles. The first excited electronic state (b3Su

1)
has an energy of 0.39 above the ground state at a pro
proton distance ofa51.4. At a temperature ofT50.026 har-
trees (b538.4), we reproduce the H2 ground-state energy
within a statistical accuracy of 0.001 hartrees. The time s
dependence of the PIMC force ont is plotted in Fig. 3. At
t<0.2 the PIMC result is close to the zero-temperature re
of F520.031 a.u. within error bars. In the following, w
use a time step oft50.2 with 196 time slices. We choose th
simulation cell to be a cubic box with lengthL520.0. Cal-
culations show that forL>20, the boundaries do not affec
the electron-proton pair correlation function atL/2 and a
convergent result with respect to cell size is obtained.

Figure 4 shows the force between the two protons a
function of interproton distance. Throughout the paper,
will use the convention that the force between the two p
tons is positive if repulsive. Very good agreement is obtain
with the essentially exact ground-state calculations. We
the forces to a straight line and determined the bond len
~which corresponds toFW 50) of 1.39960.004 bohrs, while
the ‘‘exact’’ ground-state value is 1.401@15#. The slope of
the line gives the force constant of 0.35660.028, in agree-
ment with the ground-state calculation of 0.37@16#.

In Fig. 5 is plotted the total energy around the equilibriu
position from the same PIMC run. Note here, in order
compare with ground-state energy calculations, we corre
the time step error by extrapolating to thet50 limit. This is

FIG. 3. The time step dependence of the PIMC force calcula
for a H2 molecule at an inverse temperature ofb519.2 a.u. The
proton separation is 1.5 bohrs. The zero-temperature result fo
force isF520.031 a.u.@15#.
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a constant shift of the energy and is unimportant in calcu
ing the force. Clearly, the total energy is very flat, and t
dependence of the energy on distance is completely do
nated by the noise. The reason is twofold. Firstly, the PIM
force estimator Eq.~17! has a lower variance than the finit
difference estimator Eq.~1!. Secondly, the energy is at it
minimum, while the force is not and hence changes m
rapidly. The extremum of the energy~minimum, maximum
or saddle points! are physically important, thus it is impor
tant to be able to calculate the force at those points.

The system of H3 does not form a stable molecule. Th
interest in this system comes from the need to determine
barrier of the chemical reaction H1H2→H21H. This is one
of the simplest chemical reactions. It has been found that
barrier occurs at a collinear configuration of H-H-H with a
equal nearest-neighbor separationa15a25a51.757 @17#.
For a three-electron system like H3 , Fermi statistics for spin-
1/2 particles are needed. Anderson has discussed a can

n

he

FIG. 4. The force between two protons in a H2 molecule as a
function of interproton distancea. The force is plotted as positive
when it is repulsive. Diamonds with error bars are PIMC results
b538.4 with 196 time slices. Open circles are ground-state ca
lation by Koloset al. @15#. The solid line is a linear fit to the PIMC
result. The H2 bond length is estimated to be 1.39960.004.

FIG. 5. The Born-Oppenheimer energy of a H2 molecule by
PIMC simulations are obtained from the same PIMC runs as in F
4. Time step error was corrected for by extrapolating to thet50
limit. The solid line is ground state calculation by Koloset al. @15#.
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5128 PRE 58FENGHUA ZONG AND D. M. CEPERLEY
tion scheme for this system@17# in the ground state, which
has no fixed-node error. We used the RPIMC with nonint
acting electron nodes to study the collinear H-H-H config
ration with equal bond distancesa. We used a time step o
t50.2 with 196 time slices. Figure 6 shows the force on
outer proton with respect toa. The position of the barrier
corresponds to the point where the force is zero~it is a saddle
point of the potential energy on thea1-a2 plane!, and we
determine it to be ata51.79960.016 at a temperature o
0.026 hartrees. Despite the error due to our assumed n
restriction, which does not have a nodal force, and the
that we are simulating at a nonzero temperature, this re
compares well with ground-state calculations, which givea
51.757.

IV. H 2 IN AN ELECTRON GAS

Hydrogen impurities in metals have attracted much int
est, both experimentally and theoretically@18–22#. In the
simplest model of this system, one replaces the surroun
metal ions by a uniform positive charge background a
keeps only the valence electrons. The lattice structure of
ions and effects of core electrons is neglected. One stu
the energy or equivalently the forces between two proton
a function of their separation. The electron screening of
protons is important particularly at low electron densitie
Such a model is a good approximation for simple metals
Na, Mg, and Al where the conduction electrons are in de
calized plane-wave states.

The presence of protons provides a particular difficu
for theoretical studies. Due to the lack of core electrons i
hydrogen atom, the electrons see the ‘‘bare’’ proton cha
Consequently, linear response theory is inaccurate@23#.
No”skov and his co-workers studied the H-H interaction in
electron gas, particularly, for short H-H distancesa
,2 bohrs), with a variety of methods based on the den
functional formalism and the local density approximatio
First @18#, No”skov solved the equivalent Dyson equation
the Green functionG of the system by projecting out th
differenceDG due to the presence of H impurities onto

FIG. 6. The force on the outer protons in a H-H-H colline
configuration of H3 molecule as a function of the nearest neighb
proton-proton distancea. Diamonds with error bars are PIMC
simulations atb538.4 with 196 time slices. The solid line is a fit t
the PIMC result.
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finite local basis set. Later, he solved the same problem w
an effective medium theory@19# and a self-consistent LDA
calculation@20#. Perrot@21,22# studied the long range part o
the interaction and found indeed that the H-H potential
cillates at large interproton distances,a, due to the Friedel
oscillations of the electron screening. Perrot@22# also pro-
posed another method to calculate the short-range H-H in
actions. He considered the molecular binding of H2 at shorta
to be the dominant effect, and then determined the correc
due to the electronic density.

All of the above approaches give generally consistent
scriptions of the proton-proton interaction, however, their
sults are quantitatively different. The calculation of the sa
problem with the PIMC could be a good test of the valid
of the different theoretical approaches used above. It is al
good test of the algorithm proposed here when applied to
extended system. There are no other methods that can e
carry out such a calculation.

Jellium is characterized by the dimensionless Wign
sphere radiusr s , defined byr s5(3/4pn)1/3 with n the elec-
tronic density. We carried out PIMC simulations of H2 in an
electron gas of densities representing Na (r s53.93) and Al
(r s52.07) and computed the force between the two proto
The constant background of ions gives no contribution to t
force. Ewald sums are used to compute the long range c
tributions from periodic images of proton and electr
charges. Our supercell consisted of two protons with a fix
separation ofa andNe electrons in a cube of sizeL with

Ne5
3

4pS L

r s
D 3

. ~26!

Since some electrons could be bound to the protons and
cupy a relatively smaller space, the actual surrounding e
tronic density is lower thann. However, this finite-size cor-
rection decreases rapidly asL increases as shown in Fig.
and discussed below. In most of the following, we used
temperature ofT51/16 hartrees with two time steps of:t
50.4 andt50.8. Thet50 limit is extrapolated by fitting

r
FIG. 7. The dependence of the proton-proton interaction in

electron gas on the size of the simulation cell.b516.0 and the time
stept50.4. The proton-proton separation is 1.5 bohrs. The e
tronic density corresponds tor s52.07. The number of electrons i
the lower curve are determined by Eq.~26! and have slightly lower
density. The upper curve has two more electrons in the cell.
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the result toF(t)5F(0)1at2. A typical calculation with
38 electrons andt50.4 takes about 100 CPU hours on
SGI/CRAY Origin2000 computer.

Figure 7 shows the convergence of the result as the
size increases. For the lower curve~diamonds!, the number
of electrons is determined by Eq.~26!. For the upper curve
~circles!, two additional electrons are added to the system
that the surrounding electron density is higher thann. The
two results should bound the result for densityn from above
and below. AsL increases, the difference between the t
curves quickly reduces and atL>10, no noticeable size de
pendence is present within error bars.

We performed calculations withNe538 (L521 for r s
53.93 andL511 for r s52.07), which is shown by tests t
be large enough that the finite-size effect is small with
spect to the error bars. In Fig. 8 and Fig. 9, we plot the re

FIG. 8. The proton-proton interaction in an electron gas w
r s53.93. The diamonds with error bars are PIMC results atb
516. Two time step valuest50.4 and 0.8 were used and the r
sults extrapolated tot50. 38 electrons were in the simulation ce
The solid curve is LDA calculations by No”skov@18# and the dashed
curve is by Perrot@22#. They were obtained by a fifth degree pol
nomial fit to the binding energy data and then taking an anal
derivative. For comparison, the proton-proton force in a H2 mol-
ecule@15# is also plotted as the long-dashed curve.

FIG. 9. The proton-proton interaction in an electron gas w
r s52.07. The solid curve is LDA calculations by No”skov @18# and
the dashed curve is by Perrot@22#. Other details are as in Fig. 8.
ll

o

-
lt

against previous calculations of No”skov@18# and Perrot@22#.
The presence of an electron gas greatly reduces the
binding with respect to a free H2 molecule. Atr s53.93~Fig.
8!, where the electron density is low, the short range forc
still dominated by the bonding electrons and it is almost
same as that of a free H2. As a increases, the strong attrac
tive force in a H2 molecule becomes substantially weake
The equilibrium H-H position isa'1.5, larger than the H2
bond length. One explanation is that the antibonding stat
the H-H system is also partially filled when it is placed in
electron gas. No”skov’s LDA calculation agrees quite we
with the PIMC calculation. The PIMC extends easily to lar
proton separations while No”skov’s method has an increasin
numerical error at largea due to his choice of the one
centered basis functions and is limited toa,2. For a higher
density,r s52.07 ~Fig. 9!, the H-H interaction is completely
repulsive. No”skov’s calculation, though giving the sam
qualitative description, is less repulsive than our PIMC
sult. This may be caused by the lack of the electron-elect
correlation in the LDA. Perrot’s calculation, which alway
predicts the existence of an equilibrium H-H distance ev
for densities as high asr s52.07, does not agree with eithe
the LDA or PIMC results.

We also studied the temperature effects on the electro
screening fora52.0. At low temperatures, electrons a
bound to the protons and provide an attractive force t
overcomes the Coulomb repulsion between the two proto
As the temperature increases, the electrons become mor
ergetic and it is more and more difficult to confine them
the vicinity of protons. At sufficiently high temperature
electrons are almost free, we recover the pure proton-pro
Coulomb force (1/a2).

In the nondegenerate limit (nl3!1 where l
5\/AmekBT), the electronic screening can be understood
the Debye theory@24#, where the screened proton potential

vs~r !5
e

r
exp~2r /r 0! ~27!

and r 05(4pe2bn)21/2 is the Debye length. As Fig. 10
shows, at very high temperature (T>2 hartrees), the resul
of Debye screening agrees with that of the PIMC calcu
tions. As temperature decreases, the Debye picture fails
because of the strong degeneracy of electrons and mos
portantly, the formation of electronic bound states around
protons.

V. OUTLOOK

In this paper, we presented a method to calculate the e
tronic forces with PIMC simulations. There is no trial fun
tion involved in PIMC that makes it much easier to simula
a variety of physical systems at different geometries. T
force estimator is local and thus it is both easy to calcul
and scales well with the system size. Temperature is
cluded naturally in the PIMC. This could be a disadvanta
for example, for the study of bond breaking at very lo
temperature. But it also allows one to study the finite te
perature behavior of the system, as well as comparing w
experiments directly. Finally, and most importantly, ele
tronic correlations are included so that one could study s

c
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tems where the correlation is strong.
We demonstrated the effectiveness of this method by

plying it to both simple molecules and an extended elect
gas. The computational efficiency of such systems is fo
to be scaled asNe

22.8 whereNe is the number of electrons
Future investigation will concern how the method can

FIG. 10. Temperature dependence of the proton-proton inte
tion in an electron gas withr s53.93 at a proton separation ofa
52.0. Diamonds with error bars and the solid curve are PIM
results. The dashed curve is from the Debye model. The arro
F50.25 a.u. indicates the high-temperature limit.
-

-
.

mp

f

o,
p-
n
d

e

used for atoms with inner cores. The approximation of
fermion nodal surface is the only uncontrolled approximat
in this approach. This approximation could be significa
when bound states form. The variational path integral te
nique @9# would allow one to perform truly ground stat
force calculations using this method, at the expense of r
troducing a trial function. A natural extension of this work
to study the effects of nodes that also depend on nuc
coordinates. For example, one could use the nodal sur
resulting from a one-particle self-consistent Hartree-Fock
LDA calculations@10#. One could also put in a ‘‘backflow’’
effect by transforming paths onto ‘‘quasiparticle’’ coord
nates. This approach has been found to be very successfu
liquid 3He @25# and 2D-3D electron gas@26#. It would be
interesting to develop a Monte Carlo method similar to t
Car-Parrinello approach with atoms moving on the Bo
Oppenheimer potential energy determined by QMC calcu
tions once the force calculation can be done efficien
enough.
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