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Path integral Monte Carlo calculation of electronic forces
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We describe a method to evaluate electronic forces by path integral Monte @) calculation.
Electronic correlations, as well as thermal effects, are included naturally in this method. For fermions, a
restricted approach is used to avoid the “sign” problem. The PIMC force estimator is local and has a finite
variance. We applied this method to determine the bond length, @frid the chemical reaction barrier of H
+H,—H,+H. At low temperature, good agreement is obtained with ground-state calculations. We studied the
proton-proton interaction in an electron gas as a simple model for hydrogen impurities in metals. We calculated
the force between the two protons at two electronic densities corresponding to,N8.93) and Al ¢4
=2.07) using a supercell with 38 electrons. The result is compared to previous calculations. We also studied
the effect of temperature on the proton-proton interaction. At very high temperature, our result agrees with the
Debye screening of electrons. As temperature decreases, the Debye theory fails both because of the strong
degeneracy of electrons and most importantly, the formation of electronic bound states around the protons.
[S1063-651%98)07710-1

PACS numbses): 02.70.Lq, 34.20.Cf, 71.55.Ak

[. INTRODUCTION forces with QMC methods provides not only a good test of
the accuracy of the commonly used LDA calculations but
Forces are a basic quantity needed in understanding milso an accurate many-body approach that could be applied
croscopic systems; e.g., they are basic inputs to moleculd® extended systems.
dynamics simulations and to predicting the equilibrium The calculation of forces with QMC methods is a long
structures. For a system of electrons and nuclei in thermaitanding important problem. There has been some progress

the electrons follow the motion of the nuclei adiabatically. €arlo (VMC) and diffusion Monte CarldDMC), however,

The forces exerted on those nuclei due to the fast movind'€Y are still limited to relatively small systems, for example,
electrons are known as the Born-OppenheilBD) forces. iH_[6], BH [7], and CuH[8].

Ehrenfest 1] first related the force to the expectation valuewo-ll;::je brgotzt Ci{f&?;gomfrg tslpg:]oea:ch ;?ﬁ:ritlgrggtf)e];(v)vrggﬁ
of the gradient of the potential, which led to the Hellmann- ot

. two sets of nuclear configurations, which are close together.
Feynman theorerh2]. Accurate results have been obtained A
using this theorem within the framework of the local density-(lj__hen the force, Ifor_exam%Ie, the force C(()jmponent inyhe
functional theory(LDA) [3]. Unlike the energy, the force is dIréction on nucleus, can be approximated as

d|rgctly rglated to the optimized geomet(ye., whenF JE E()?+AXiy§/)—E()Z)
=0) and it allows one to probe every single nucleus in the Fiy=— =— AX )
iy

)
. OX;
system; one can determine the forces on each nucleus and Y

optimize their individual positions concurrently. In conjunc- - . L= .

tion with the total energy, the force can be used to helpVN€reX is the position of all nuclei and; is for nucleus.

construct the potential energy surface. With energies know owever, due to the stausupal nature of Monte (;arlo C"’?'CU'
tions, the energy estimation is always associated with a

at certain grid points, a more accurate fit can be obtained """ )
one knows the derivatives at those points also. statistical errorog and the error for the force is themg

Quantum Monte CarldQMC) methods are capable of =+20e/AX;, for independent sampling of and X+ AX.
treating many-body effects directly, which is essential inHence the error diverges asX;,—0, making this simple
cases where the electron correlations are important. Tha@pproach impractical.
computational demand of QMC scales WS [4] or less The Hellmann-Feynman theorem expresses the force as
where N is the number of particles, while other methods, the expectation value of the potential gradient with respect to
which depend on a complete representation of the manythe wave function¥:
body wave function or density matrix, such as configuration R R R
interaction(Cl), have an exponential dependence on the size F=—(¥|VxV(X)| D). 2
of the system. For QMC simulations, the total energy of the
system usually has a variance that is proportional to the siz€his approach is well suited for Hartree-Fock or LDA-type
of the system, making it difficult to distinguish the contribu- calculations where the trial wave functions are the eigenfunc-
tion of a single particle and the effect of a local displacementions of the Hamiltonian without statistical fluctuations.
of nuclear positions. Consequently, the ability to calculateHowever, as illustrated in Ref5], the variance of this force
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estimator is infinite for Coulomb systems because of the 1/ p(R,R’; 8)=(R|e F¥|R’)

behavior of the potential as electrons approach a nucleus.

Consequently, it is not possible to get a reliable estimation of _ _ap (ri—r{)?

the force by Monte Carlo methods using this estimator. = H (4mhiB) " exp — 4\ B
There are other analytical derivative methods for QMC.

For example, one can explicitly carry out the derivative of xexd -U(RR";B8)], 5
the variational or diffusion Monte Carlo energy estimator ) R
[5]: whereR={r, ... ry\} is the set of all particle coordinates,
B=1/kgT is the inverse of the temperature. The expectation
f B4, WdR value of an operato® is
E=—"-—"7-— () 1
[ worar ()= 3| dRaRpRRBIRIOR),  ®

and express the force as a functionVof®,, V«E, , and whereZ=gxp(—,8f)=fd Rp(R,R;B) is the partition func-
Vx¥. HereW is the trial wave function an® is electronic  tion and 7 is the free energy. _ _ .
coordinate. Noteb,, which is the exact ground state wave The calcu!atlon of many-body d.er?SIty matrix at a'fmlte
function of the system, is unknown. One needs either to findemperature Is done by expanding it in terms of density ma-
a good approximation t& y®, or to use further diffusion trices at higher temperatures:
Monte Carlo walks to calculate it. Also, it may be difficult to
determineVy¥. These difficulties have prevented routine 0 pM. _J f 14 P2 M-1

. . R R™:B)=| --- | dR'dR*---dR
calculations of forces with QMC. Pl p)

In this paper, we formulate the force as the derivative of
the Born-Oppenheimer free energy with respect to the
nucle_ar coordinates, and then evaluafce the derivative w!th &hereM is the number of time slices ane- BIM is called
path integral Monte Carl@PIMC) technique. The force esti- the time step
mator is local and easy to compute. It also has a much It is much easier to obtain a good approximation to the

smaller variance than that of E{L). In the following, we high-temperature density matrix since the system behaves

first review the basic formulation of PIMC and then show ; ; .

: . like a classical system at high temperature. The pair product
how the force Is computed.. We apply this method to theapproximatior{9] has been shown to give much smaller er-
molecules H and H;, and find good agreement between

. rors in th nsity matri mpared with the primitiv -
PIMC results at low temperature with those of accurat ors in the density matrices compared with the primitive ap

i roximation, so a much larger time step can be used. In this
ground-state calculations. To demonstrate the method wor as roach, one solves the exact actinfr; ,r/; : 7) for a pair
in an extended system, we study the proton-proton interac=PP ' ety P

tion in an electron gas, and compare it to LDA calculations.Of particles and uses

Xp(R%RY7)- - p(RMLRM: 1) (7)

Il. PATH INTEGRAL AND FORCE CALCULATION U(R,R’;T)=Z_ Ua(rij ;5 7). ®
1<]

Path integral Monte Carlo calculation is a powerful com-
putational technique that is capable of simulating boson syserrors occur only when three or more particles come close to
tems[9] exactly and fermion§10] accurately. Besides total each other. In our simulation, we used a matrix squaring
energy, many properties of the system, such as pair correlanethod [9] to numerically calculate the high-temperature
tion function, specific heat, pressure, momentum distribupair action.
tion, and the boson superfluid density have been calculated. Because of their relevance, here we review a few proper-
In this paper, we show how one can compute the electronities of the Coulomb pair actiofiLl1]. The classical limit of
forces with PIMC as well. the action is7v(r) whereuv(r) is the Coulomb potential
Consider a system df nonrelativistic particlegelectrons  between the two particles. For largg or high temperature,
and nuclei interacting via Coulomb potential. The Hamil- one can expand the action in powers 7ofor = (Wigner-

tonian is Kirkwood expansionto get on the diagonal:
H——EN: VD &8 (4) o Tee) T(e€)’(\it)\)) O (9
Mt Up(ij ,ij s 7)= > 12 (™. (9

_ 2 . . . }
where\;=7%4/2m; . We will use atomic units throughout the At small rij, quantum effects smooth the divergence of the

paper: the unit for length is bohr and the unit for energy iscoylomb potential. As a result, the pair action and its coor-
hartree. In these units, the electron chaege —1 and the  jnate derivative are finite. The cusp condition of the Bloch

inverse electron mass =1/2. o equation gives the slope at the origin:
In principle, all the properties of an equilibrium system at
a finite temperaturd can be determined from the thermal uy(rij 1 57) e,
density matrix, which, for a Boltzmann system, can be ex- lim =- . 10
Y y o) 20N FN) (10

pressed in the position representation as rjj—0
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Now let us take into account Fermi statistics. Without R 1

magnetic fields, the Hamiltonian is independent of spin and F=- B—f f drR®...RM71
S, is a good quantum number. One can treat identical par-
ticles with differents, as different species and apply quan-

tum statistics only to electrons of the same spin.Rdte the X| p(R%RY 7)- - p(RM~1 RM; 7)
permutation operator of particle labels. Then for each spin
state[10]: M-1 JU(R.RI*1:7)
—_— (15
, 1 P , i=0 aX
pr(RR:A=1r2 (D p(PRR:B)., (1D
. , , . . 1 /"3 OUR R )
wherepg is the fermion density matrix and is the number ="V E —_—, (16
of electrons in that spin state. =0 2

Because odd permutations of fermions contribute a minus M
sign, a direct summation as for bosons will result in an ex\Where(- - -) denotes an average over the pais-R and
ceedingly low efficiency ag8 or N increase[10]. The re- R are electronic coordinates only. The nuclear coordinates
stricted path integral Monte Carl®PIMC) [10] solves this ~ are not epr|C|tIy' written in the action bepause th.ey are inde-
problem by only allowing paths that do not cross the nodaPendent o_f the time slice and fixed during the_ simulation.
surface of the fermion density matrix. The nodes are deter- We arrive at the formula for the force estimator by ex-
mined bypg(R!,R*:t)=0. R*, the reference point, is a spe- pangimg the action in terms of sums over pairs of charged
cial point on the path. It is the value of the density matrix Particles:
with respect to the reference point that restricts the paths. If M1 N
one knows the exact (8—1)-dimensional nodes, the -1 (T, Tig 5 7)
RPIMC method is exact. In practice, the nodes are not F==r “~ < P '
known; one introduces a trial density matrix and uses its

nodes instead. In this paper, we use the nodal surface Qiote here thak and | run over nuclear indices also. For
noninteracting particle systems. This has been shown to 9VEmallr or r’. both u,(r,r'":7) anddu,/dr [Eq. (10)] have
accurate simulations of hydrogen plas[ma_] and I|qU|d_3|_-|e finite values. At larger, the action approachese;e;/r.
[13]. The success of such a seemingly simple restriction C8%here is no divergence in this force estimator and thus the

b_e under_stood if one .takes amore rgallsnc pair product der’Error is finite in contrast to estimators based on the Hellman-
sity matrix and applies the end-point approximation, oneFeynman theorem

finds the nodal surface is exactly that of the noninteracting Fermion nodes cause an additional contribution to the

SySte”;‘[lo]- The off-diagonal corrections to the nodes scaleg, . e The electronic nodal surface can depend on the posi-
asO(t), they are important only at fairly low temperatures yjo s of nuclei, and so does the distanceRbfto the nodes:
because the leading kinetic energy contributio®{g ?).

RPIMC gives an additional contribution to the action due
to the restriction on the crossing of the nodal surfat@.

Locally the nodes can be approximated as hyperplanes. For _ o _ _
small time stepr, the nodal action is When taking the derivative of the action with respect to

nuclear coordinates, the change of the nodal surface will con-
didi+l
1- exp{ - )

(17

d=d'({X;, ... Xy . (18

tribute a force on the nuclei:

M—-1
un(R%,RM: B) = — ;0 In

- 1/ guy(R,R™ Y 7)

S i Fam— o ———— (19

whered' is the distance oR' to the nearest nodes. T aXx
Now return to the problem of computing the quantum
forces: consider a system b, nuclei andN, electrons. We 1 digi+? “Ly(didith
fix the position of nuclei(no nuclear kinetic energyand =— exp( )_1} - ),
calculate the Born-Oppenheimer free energy of the electrons AT AT axX
as a function of the nuclear coordinates: (20
F=F({Xq, ... XNH}?B)- (13 However, this term vanishes with noninteracting nodal sur-

faces because the nodal positions are independent of the
The force exerted on the nuclei in thermal equilibrium is  nuclear coordinates.
We now investigate how the computer time will depend
- . 1. on the time step. In general, the variance of the force esti-
F=-VxF= EVXZ, (14 mator, o, is a function of the time step. Because of the
high-temperature approximations introduced in a PIMC
whereZ is the partition function an&¥ y only acts on nuclear simulation, the force is only exact in the limit of—0.
coordinates. Hence the behavior of the variance at smalaffects the
Differentiating the path integral expression for the parti-overall efficiency of a calculation. To understand the depen-
tion function: dence ofo-ﬁ on 7, we consider a typical, yet simple system:
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a hydrogen atom. Assuming independent samples of slices 1000
on the path, the variance of the force is
1/ (ou(ri,ritm)\2 1/ /au\\?
2 X 2\ | 9X
100 | i}

wherer! is the relative coordinate between the electron and
the proton at time step. The second term in the above
equation is the square of the foreero in this cageand is
independent of, so we only need to estimate the first term.
Both the small [Eqg. (10)] and larger [Eqg. (9)] limit for

&

the action is known. We approximate the derivative of the 104 1
action as . :
0.1 1.0
au(r,r;r) |1, [r|<r. 1 (hartree)
_—= 22
ar 7l|r|?, Ir|=re, 22 FIG. 1. The efficiencyr of the PIMC force calculation for a 4

molecule as a function of time stepat an inverse temperatuy
wherer .= y2\ 7, the thermal de Broglie wavelength, is the =19.2 a.u. in units of boRthartreé sec on a SGI/CRAY Ori-
radius inside of which quantum correction is important. Thegin2000 computer. The solid line is the power lawfit"
variance is thus roughly

sampled by cyclic exchange of the labels of three particles

2 1 ) au(r,r;7)\ 2 followed by a path movéfor RPIMC, a two particle permu-
TFT 25 drp(r,r;B) X (23 tation gives a minus sign and is not allowedhis achieves
ergodic sampling of the permutation space.
xr 124+0(1). (24)

T Ill. FORCE CALCULATION FOR H , AND Hj;
The error will diverge when— 0, but only very slowly, as
4 To test the above approach, we apply it to theadd H;

The above estimate does not take into account hownolecules, since very accurate results for these systems are
quickly independent samples can be generated or how adjgknown. PIMC is a finite temperature method and it is well
cent time slices are correlated, so we performed an empiricdnown that an isolated Coulomb system at a finite tempera-
study of the efficiency using our PIMC code. The efficiencyture would self-ionize. To circumvent this problem, we place
of the PIMC force calculation is defined as the molecule in a periodic cube. When an electron ionizes

and moves out of the simulation cell from one side, it will
1 reenter from the other side and be captured again by the
= (25  molecule. The properties of the ground state and low excited
orPT states of the system are unaffected if the cell is large enough
because the wave functions corresponding to these states are
very small at the cell boundary. As a result, these states
hardly feel the existence of the periodic boundary condition

&F

It measures how quickly the variance of the foroé,, de-
creases as a function of computer time. Heilie the number
of Monte Carlo steps andl is the computer time per step.
Figure 1 shows the efficiency as a functionsdbr the PIMC
simulation of a H molecule. We found thajr scales as'*
The only terms that contribute in E¢L7) are terms in-
volving the nucleus in question and another charged particle.
The dominant contributions are local. The force on a nucleus
mostly comes from nearby electrons, hence the force vari-
ance is mainly due to nearby electronic paths and indepen-
dent of the total number of electrons. One can preferentially
move electrons that are near to the nucleus and thereby ob-
tain a better overall efficiency of the force calculation. We
performed PIMC simulations of H impurities in an electron
gas (see Sec. IY and found a power-law behavior of the

10.0 T T T T

&

efficiency as a function of the number of electraws. As
shown in Fig. 2,é.~N_ %8,
To evaluate the path average in Efj7), one samples the

0.1

10

20

N

e

30

40

path space with the multilevel Metropolis method; the level
is chosen so that the diffusion of paths in both the coordinate F|G. 2. The efficiencyé: of the PIMC force calculation as a
and the permutation space is maximized. This is discussed iianction of the total number of electrons. The system consists of
detail in Refs.[9,10]. Typically a path segment of 4—-16 two protons and\, electrons as discussed in Fig. 7. The solid line
slices is moved at the same time. The permutation space is the power law fitN_ 2,
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FIG. 3. The time step dependence of the PIMC force calculation FIG. 4. The force between two protons in a hholecule as a
for a H, molecule at an inverse temperature®£19.2 a.u. The function of interproton distanca. The force is plotted as positive
proton separation is 1.5 bohrs. The zero-temperature result for thehen it is repulsive. Diamonds with error bars are PIMC results at
force isF=-0.031 a.u[15]. B=38.4 with 196 time slices. Open circles are ground-state calcu-
lation by Koloset al.[15]. The solid line is a linear fit to the PIMC

and the wave functions are unchanged. For higher excite@su”' The H bond length is estimated to be 1.396.004.

states and continuous states, which are more spread out in . ) ) )
space, wave functions from adjacent cells overlap with eacf constant shift of the energy and is unimportant in calculat-
other. Those states and their energy spectrum are thd@d the force. Clearly, the total energy is very flat, and the
changed in such a way as to prevent the ionization. We arédépendence of the energy on distance is completely domi-
only concerned with the low-temperature properties of the'@ted by the noise. The reason is twofold. Firstly, the PIMC
system, corresponding to the lowest states of the moleculdorce estimator Eq(17) has a lower variance than the finite
The periodic boundary condition is well suited for this pur- difference estimator Eq(1). Secondly, the energy is at its
pose. The minimum image conventifit¥] was used in cal- Minimum, while the force is not and hence changes more
culating the Coulomb interaction. No long range contribu-fapidly. The extremum of the enerdyninimum, maximum
tions from images are included. or saddle pointsare physically important, thus it is impor-
The ground state of hydrogen moleculejHhas two tant to be able to calculate the force at those points.
electrons with opposite spin and can be simulated as distin- 1he system of il does not form a stable molecule. The
guishable particles. The first excited electronic stal?G‘EC) interest in this system comes from the need to determine the
has an energy of 0.39 above the ground state at a protofR@rrier of the chemical reaction-+HH,—H,+H. This is one
proton distance of=1.4. At a temperature 6f=0.026 har- of the simplest chemical reactions. It has been found that the
trees (3=38.4), we reproduce the Hground-state energy barrier occurs at a collinear configuration of H-H-H with an

within a statistical accuracy of 0.001 hartrees. The time steﬁqual nearest-neighbor separatiap=a,=a=1.757 [17].
dependence of the PIMC force anis plotted in Fig. 3. At For a three-electron system likgyHFermi statistics for spin-

7=<0.2 the PIMC result is close to the zero-temperature resuft/2 particles are needed. Anderson has discussed a cancella-
of F=-0.031 a.u. within error bars. In the following, we

use a time step of=0.2 with 196 time slices. We choose the -1.170 "
simulation cell to be a cubic box with length=20.0. Cal-
culations show that fok. =20, the boundaries do not affect 4472 L i
the electron-proton pair correlation function af2 and a
convergent result with respect to cell size is obtained. 0
Figure 4 shows the force between the two protons as a € 174
function of interproton distance. Throughout the paper, we <
will use the convention that the force between the two pro- 2 _; 54
tons is positive if repulsive. Very good agreement is obtained &
with the essentially exact ground-state calculations. We fit
the forces to a straight line and determined the bond length -1.178 - ]
(which corresponds t§=0) of 1.399-0.004 bhohrs, while
the “exact” ground-state value is 1.4Q15]. The slope of ~1.180 : ) ‘
the line gives the force constant of 0.356.028, in agree- 1.32 1.36 azl')‘;ir) 144 148

ment with the ground-state calculation of 0.38].
In Flg 5is plotted the total energy around the equilibrium FIG. 5. The Born_Oppenheimer energy of 3 Kholecule by
position from the same PIMC run. Note here, in order top|MC simulations are obtained from the same PIMC runs as in Fig.
compare with ground-state energy calculations, we correctedl. Time step error was corrected for by extrapolating to ke
the time step error by extrapolating to the O limit. Thisis  limit. The solid line is ground state calculation by Kolesal.[15].
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FIG. 6. The force on the outer protons in a H-H-H collinear  FIG. 7. The dependence of the proton-proton interaction in an
configuration of H molecule as a function of the nearest neighbor electron gas on the size of the simulation cgi: 16.0 and the time
proton-proton distancex. Diamonds with error bars are PIMC step7=0.4. The proton-proton separation is 1.5 bohrs. The elec-
simulations aj3=38.4 with 196 time slices. The solid line is a fit to tronic density corresponds t@=2.07. The number of electrons in
the PIMC result. the lower curve are determined by Eg6) and have slightly lower

density. The upper curve has two more electrons in the cell.
tion scheme for this systefid7] in the ground state, which
has no fixed-node error. We used the RPIMC with noninterfinite local basis set. Later, he solved the same problem with
acting electron nodes to study the collinear H-H-H configu-an effective medium theory19] and a self-consistent LDA
ration with equal bond distances We used a time step of calculation[20]. Perrot{21,22 studied the long range part of
7=0.2 with 196 time slices. Figure 6 shows the force on thethe interaction and found indeed that the H-H potential os-
outer proton with respect ta. The position of the barrier cillates at large interproton distances, due to the Friedel
corresponds to the point where the force is Zéris a saddle  oscillations of the electron screening. Peri@2] also pro-
point of the potential energy on the-a, plang, and we posed another method to calculate the short-range H-H inter-
determine it to be an=1.799-0.016 at a temperature of actions. He considered the molecular binding ¢fatishorta
0.026 hartrees. Despite the error due to our assumed nodt be the dominant effect, and then determined the correction
restriction, which does not have a nodal force, and the factiue to the electronic density.
that we are simulating at a nonzero temperature, this result All of the above approaches give generally consistent de-
compares well with ground-state calculations, which give scriptions of the proton-proton interaction, however, their re-
=1.757. sults are quantitatively different. The calculation of the same
problem with the PIMC could be a good test of the validity
of the different theoretical approaches used above. It is also a
good test of the algorithm proposed here when applied to an

Hydrogen impurities in metals have attracted much interextended system. There are no other methods that can easily
est, both experimentally and theoreticall¥8—22. In the carry out such a calculation.
simplest model of this system, one replaces the surrounding Jellium is characterized by the dimensionless Wigner
metal ions by a uniform positive charge background andsphere radius, defined byr = (3/47n)Y with n the elec-
keeps only the valence electrons. The lattice structure of th&onic density. We carried out PIMC simulations of h an
ions and effects of core electrons is neglected. One studiedectron gas of densities representing Mg=3.93) and Al
the energy or equivalently the forces between two protons ag ;=2.07) and computed the force between the two protons.
a function of their separation. The electron screening of th&he constant background of ions gives no contribution to this
protons is important particularly at low electron densities.force. Ewald sums are used to compute the long range con-
Such a model is a good approximation for simple metals likgributions from periodic images of proton and electron
Na, Mg, and Al where the conduction electrons are in delocharges. Our supercell consisted of two protons with a fixed

IV.H, IN AN ELECTRON GAS

calized plane-wave states. separation of andN, electrons in a cube of size with
The presence of protons provides a particular difficulty

for theoretical studies. Due to the lack of core electrons in a N _i E 3 (26

hydrogen atom, the electrons see the “bare” proton charge. © Am\rg )

Consequently, linear response theory is inaccuf&@®).

Noskov and his co-workers studied the H-H interaction in anSince some electrons could be bound to the protons and oc-
electron gas, particularly, for short H-H distancea ( cupy a relatively smaller space, the actual surrounding elec-
<2 bohrs), with a variety of methods based on the densityronic density is lower than. However, this finite-size cor-
functional formalism and the local density approximation.rection decreases rapidly asincreases as shown in Fig. 7
First [18], Noskov solved the equivalent Dyson equation ofand discussed below. In most of the following, we used a
the Green functiorG of the system by projecting out the temperature off =1/16 hartrees with two time steps of:
difference AG due to the presence of H impurities onto a =0.4 and7=0.8. Ther=0 limit is extrapolated by fitting
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0.45 against previous calculations of/skov[18] and Perrof22].
The presence of an electron gas greatly reduces the H-H
0.35 binding with respect to a free Hnolecule. Atrg=3.93(Fig.
8), where the electron density is low, the short range force is
0.25 still dominated by the bonding electrons and it is almost the
e same as that of a free,;H As a increases, the strong attrac-
% 0.15 tive force in a H molecule becomes substantially weaker.
E The equilibrium H-H position i~ 1.5, larger than the H
0.05 bond length. One explanation is that the antibonding state of
the H-H system is also patrtially filled when it is placed in an
~0.05 electron gas. Mgkov's LDA calculation agrees quite well
with the PIMC calculation. The PIMC extends easily to large
015 ' . , . proton separations while ANd&ov’'s method has an increasing

FIG. 8. The proton-proton interaction in an electron gas with
rs=3.93. The diamonds with error bars are PIMC resultsBat
=16. Two time step values=0.4 and 0.8 were used and the re-
sults extrapolated te=0. 38 electrons were in the simulation cell.
The solid curve is LDA calculations by Akov[18] and the dashe

1.0

numerical error at largex due to his choice of the one-
centered basis functions and is limitedae 2. For a higher
density,r,=2.07 (Fig. 9), the H-H interaction is completely
repulsive. Nekov's calculation, though giving the same
qualitative description, is less repulsive than our PIMC re-
sult. This may be caused by the lack of the electron-electron

g correlation in the LDA. Perrot's calculation, which always

curve is by Perrof22]. They were obtained by a fifth degree poly- Predicts the existence of an equilibrium H-H distance even
nomial fit to the binding energy data and then taking an analytidor densities as high as=2.07, does not agree with either

derivative. For comparison, the proton-proton force in aribl-

ecule[15] is also plotted as the long-dashed curve.

the result toF (7)=F(0)+ a72. A typical calculation with
38 electrons and=0.4 takes about 100 CPU hours on a

SGI/CRAY 0Origin2000 computer.

Figure 7 shows the convergence of the result as the ce
size increases. For the lower curigiamonds$, the number

the LDA or PIMC results.

We also studied the temperature effects on the electronic
screening fora=2.0. At low temperatures, electrons are
bound to the protons and provide an attractive force that
overcomes the Coulomb repulsion between the two protons.
As the temperature increases, the electrons become more en-

rgetic and it is more and more difficult to confine them to

e vicinity of protons. At sufficiently high temperature,
electrons are almost free, we recover the pure proton-proton

of electrons is determined by E¢26). For the upper curve
(circles, two additional electrons are added to the system s

- - 3 <
that the surrounding electron density is higher tmariThe In _the nondegenerate limit ng”<1 where A
two results should bound the result for densitirom above =/ YMekgT), the electronic screening can be understood by

and below. AsL increases, the difference between the twothe Debye theory24], where the screened proton potential is

curves quickly reduces and Bt 10, no noticeable size de-
pendence is present within error bars.

We performed calculations withl;=38 (L=21 for rg
=3.93 andL =11 forrg=2.07), which is shown by tests to
be large enough that the finite-size effect is small with re-and ro=(47e?gn) 2 is the Debye length. As Fig. 10
spect to the error bars. In Fig. 8 and Fig. 9, we plot the resulshows, at very high temperatur€%2 hartrees), the result
of Debye screening agrees with that of the PIMC calcula-
tions. As temperature decreases, the Debye picture fails both

goulomb force (7).

vi(1)= - ex—rIrg) 27

045 - ' ' ‘ ' because of the strong degeneracy of electrons and most im-
035 | ] portantly, the formation of electronic bound states around the
protons.
0.25 | 1
5 V. OUTLOOK
©
g 0157 1 In this paper, we presented a method to calculate the elec-
2 tronic forces with PIMC simulations. There is no trial func-
0.05 - - - tion involved in PIMC that makes it much easier to simulate
a variety of physical systems at different geometries. The
-0.05 [ B it T force estimator is local and thus it is both easy to calculate
and scales well with the system size. Temperature is in-
-0.15 L= ‘ ‘ ) l cluded naturally in the PIMC. This could be a disadvantage,
10 15 a(ifhr) 25 8.0 for example, for the study of bond breaking at very low

temperature. But it also allows one to study the finite tem-
FIG. 9. The proton-proton interaction in an electron gas withperature behavior of the system, as well as comparing with

r=2.07. The solid curve is LDA calculations by/skov[18] and  experiments directly. Finally, and most importantly, elec-

the dashed curve is by Peri@2]. Other details are as in Fig. 8.  tronic correlations are included so that one could study sys-
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0.30 . « ' ' used for atoms with inner cores. The approximation of the
fermion nodal surface is the only uncontrolled approximation
in this approach. This approximation could be significant
when bound states form. The variational path integral tech-
nique [9] would allow one to perform truly ground state
force calculations using this method, at the expense of rein-
troducing a trial function. A natural extension of this work is
to study the effects of nodes that also depend on nuclear
coordinates. For example, one could use the nodal surface
resulting from a one-particle self-consistent Hartree-Fock or
LDA calculations[10]. One could also put in a “backflow”
effect by transforming paths onto ‘“quasiparticle” coordi-
. . nates. This approach has been found to be very successful for
0.0 0.5 1.0 15 2.0 liquid 3He [25] and 2D-3D electron gaf26]. It would be
Temperature (hartree) interesting to develop a Monte Carlo method similar to the
Car-Parrinello approach with atoms moving on the Born-
FIG. 10. Temperature dependence of the proton-proton interaCOppenheimer potential energy determined by QMC calcula-

tion in an electron gas withs=3.93 at a proton separation &  tiong once the force calculation can be done efficiently
=2.0. Diamonds with error bars and the solid curve are PIMCenough

results. The dashed curve is from the Debye model. The arrow at
F=0.25 a.u. indicates the high-temperature limit.

0.25

0.20

0.15

0.10

Force (a.u.)
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